References
<A NAME="RU11503ST-1">1</A>
β-Dichroine and α-dichroineare two names once been proposed to two of three isomeric
alkaloidsisolated from Dichroa febrifuga Lour.,which were correlated with febrifugine and isofebrifugine respectively,see
ref.
[2b]
[3b]
<A NAME="RU11503ST-2A">2a</A>
Koepfli JB.
Mead JF.
Brockman JA.
J.Am. Chem. Soc.
1947,
69:
1837
<A NAME="RU11503ST-2B">2b</A>
Koepfli JB.
Mead JF.
Brockman JA.
J. Am. Chem. Soc.
1949,
71:
1048
<A NAME="RU11503ST-2C">2c</A>
Murata K.
Takeno F.
Fushiya S.
Oshima Y.
J. Nat. Prod.
1998,
61:
729
<A NAME="RU11503ST-3A">3a</A>
Chou TQ.
Jang CS.
Fu FY.
Kao YS.
Huang KC.
Science (Chinese)
1947,
29:
49
<A NAME="RU11503ST-3B">3b</A>
Chou T.-Q.
Fu FY.
Kao YS.
J.Am. Chem. Soc.
1948,
70:
1765
<A NAME="RU11503ST-4A">4a</A>
Ablondi F.
Gordon S.
Morton J.
Williams JH.
J. Org. Chem.
1952,
17:
14
<A NAME="RU11503ST-4B">4b</A>
Hutchings BL.
Gordon S.
Ablondi F.
Wolf CF.
Williams JH.
J. Org. Chem.
1952,
17:
19
<A NAME="RU11503ST-5A">5a</A>
Koepfli JB.
Brockman JA.
Moffat J.
J. Am. Chem. Soc.
1950,
72:
3323
<A NAME="RU11503ST-5B">5b</A>
Baker BR.
McEvoy FJ.
Schaub RE.
Joseph JP.
Williams JH.
J. Org. Chem.
1953,
18:
178
<A NAME="RU11503ST-5C">5c</A>
Takeuchi Y.
Azuma K.
Abe H.
Sasaki K.
Harayama T.
Chem. Pharm.Bull.
2002,
50:
1011
<A NAME="RU11503ST-5D">5d</A>
Takeuchi Y.
Azuma K.
Oshige M.
Abe H.
Nshioka H.
Sasaki K.
Harayama T.
Tetrahedron
2003,
59:
1639
<A NAME="RU11503ST-6A">6a</A>
Kobayashi S.
Ueno M.
Suzuki R.
Ishitani H.
TetrahedronLett.
1999,
40:
2175
<A NAME="RU11503ST-6B">6b</A>
Kobayashi S.
Ueno M.
Suzuki R.
Ishitani H.
Kim H.-S.
Wataya Y.
J. Org. Chem.
1999,
64:
6833
<A NAME="RU11503ST-7A">7a</A>
Jang CS.
Fu FY.
Wang CY.
Huang KC.
Lu G.
Thou TC.
Science
1946,
103:
59
<A NAME="RU11503ST-7B">7b</A>
Frederick AK.
Spencer CF.
Folkers K.
J. Am. Chem. Soc.
1948,
70:
2091
<A NAME="RU11503ST-8A">8a</A>
Waletzky E,
Berkelhammer G, and
Kantor S. inventors; U. S. Patent 3320124.
<A NAME="RU11503ST-8B">8b</A>
Elkin M.
Reich R.
Nagler A.
Aingorn E.
Pines M.
De Groot N.
Hochberg A.
Vlodavsky I.
Clin. Cancer Res.
1999,
5:
1982
<A NAME="RU11503ST-9">9</A>
Patnam R.
Chang F.-R.
Chen C.-Y.
Kuo RY.
Lee YH.
Wu YC.
J. Nat. Prod.
2001,
64:
948
<A NAME="RU11503ST-10A">10a</A>
Takaya Y.
Tasaka H.
Chiba T.
Uwai K.
Tanitsu M.
Kim H.-S.
Wataya Y.
Miura M.
Takeshita M.
Oshima Y.
J. Med. Chem.
1999,
42:
3163
<A NAME="RU11503ST-10B">10b</A>
Kikuchi H.
Tasaka H.
Hirai S.
Takaya Y.
Iwabuchi Y.
Ooi H.
Hatakeyama S.
Kim H.-S.
Wataya Y.
Oshima Y.
J. Med.Chem.
2002,
45:
2563
<A NAME="RU11503ST-11A">11a</A>
Baker BR.
Schaub RE.
McEvoy FJ.
Williams JH.
J. Org. Chem.
1952,
17:
132
<A NAME="RU11503ST-11B">11b</A>
Baker BR.
Schaub RE.
McEvoy FJ.
Williams JH.
J.Org. Chem.
1953,
18:
153
<A NAME="RU11503ST-11C">11c</A>
Baker BR.
McEvoy FJ.
Schaub RE.
Joseph JP.
Williams JH.
J. Org. Chem.
1953,
18:
178
<A NAME="RU11503ST-11D">11d</A> See also:
Baker BR.
McEvoy FJ.
J.Org. Chem.
1955,
20:
118
<A NAME="RU11503ST-11E">11e</A>
Baker BR.
McEvoy FJ.
J.Org. Chem.
1955,
20:
136
<A NAME="RU11503ST-11F">11f</A>
Hill RK.
Edwards AG.
Chem.Ind.
1962,
858
<A NAME="RU11503ST-11G">11g</A>
Barringer DF.
Beakelhammer GB.
Wayne RS.
J. Org. Chem.
1973,
38:
1937
<A NAME="RU11503ST-11H">11h</A>
Burgess LE.
Gross EKM.
Jurka J.
Tetrahedron Lett.
1996,
37:
3255
<A NAME="RU11503ST-11I">11i</A>
Takeuchi Y.
Hattori M.
Abe H.
Harayama T.
Synthesis
1999,
1814
<A NAME="RU11503ST-12A">12a</A>
Takeuchi Y.
Azuma K.
Takakura K.
Abe H.
Harayama T.
Chem. Commun.
2000,
1643
<A NAME="RU11503ST-12B">12b</A>
Okitsu O.
Suzuki R.
Kobayashi S.
Synlett
2000,
989
<A NAME="RU11503ST-12C">12c</A>
Taniguchi T.
Ogasawara K.
Org. Lett.
2000,
2:
3193
<A NAME="RU11503ST-12D">12d</A>
Takeuchi Y.
Azuma K.
Takakura K.
Abe H.
Kim H.-S.
Wataya Y.
Harayama T.
Tetrahedron
2001,
57:
1213
<A NAME="RU11503ST-12E">12e</A>
Ooi H.
Urushibara A.
Esumi T.
Iwabuchi Y.
Hatakeyama S.
Org.Lett.
2001,
3:
953
<A NAME="RU11503ST-12F">12f</A>
Sugiura M.
Kobayashi S.
Org. Lett.
2001,
3:
477
<A NAME="RU11503ST-12G">12g</A>
Sugiura M.
Hagio H.
Hirabayashi R.
Kobayashi S.
Synlett
2001,
1225
<A NAME="RU11503ST-12H">12h</A>
Okitsu O.
Suzuki R.
Kobayashi S.
J.Org. Chem.
2001,
66:
809
<A NAME="RU11503ST-12I">12i</A>
Sugiura M.
Hagio H.
Hirabayashi R.
Kobayashi S.
J. Am. Chem. Soc.
2001,
123:
12510
<A NAME="RU11503ST-13">13</A>
Huang P.-Q.
Liu L.-X.
Wei B.-G.
Ruan Y.-P.
Org. Lett.
2003,
5:
1927
<A NAME="RU11503ST-14">14</A>
Gringore OH.
Rouessac FP. In
Org. Synth., Coll.Vol. VII
Freeman JP.
JohnWiley and Sons;
New York:
1990.
p.99
<A NAME="RU11503ST-15A">15a</A>
Chamberlin AR.
Chung JYL.
J. Am. Chem. Soc.
1983,
105:
3653
<A NAME="RU11503ST-15B">15b</A>
Klaver WJ.
Hiemstra H.
Speckamp WN.
J. Am. Chem. Soc.
1989,
111:
2588
<A NAME="RU11503ST-15C">15c</A>
Bernardi A.
Micheli F.
Potenza D.
Scolastico C.
Villa R.
TetrahedronLett.
1990,
31:
4949
<A NAME="RU11503ST-16">16</A> For a review on clay and clay-supportedreagents in organic synthesis, see:
Varma RS.
Tetrahedron
2002,
58:
1235
There is not a general rule fordetermining the relative stereochemistry of 5,6-disubstituted
2-piperidinonesby 1H NMR vicinal coupling constants (J
5,6). However, during the courseof this work, we were able to observed that for N-unsubstituted6-substituted 5-alkoxy- or 5-silyloxy-2-piperidinones, trans-isomers generally show larger J
5,6 (J
5,6>3Hz) than those of cis-isomers (J
5,6<3 Hz). Two literatureprecedents listed below are in support of this argument:
<A NAME="RU11503ST-17A">17a</A>
Boudreault N.
Ball RG.
Bayly C.
Bermstein MA.
Tetrahedron
1994,
50:
7947
<A NAME="RU11503ST-17B">17b</A>
Bach T.
Bergmann H.
Brummerhop H.
Lewis W.
Harms K.
Chem.-Eur.J.
2001,
7:
4512
<A NAME="RU11503ST-18">18</A>
Brown DS.
Charreau P.
Hansson T.
Ley SV.
Tetrahedron
1991,
47:
1311
<A NAME="RU11503ST-19">19</A> For a recent review on α-amidoalkylationof N-acyliminium, see:
Speckamp WN.
Moolenaar MJ.
Tetrahedron
2000,
56:
3817
<A NAME="RU11503ST-20">20</A>
Campbell AL.
Pilipauqkas DR.
Khanna IK.
Rhodes RA.
TetrahedronLett.
1987,
28:
2331
<A NAME="RU11503ST-21">21</A>
Greene TW.
Wuts PGM.
ProtectiveGroups in Organic Chemistry
2nd ed.:
Wiley;
NewYork:
1991.
p.401
<A NAME="RU11503ST-22A">22a</A>
Yamaura M.
Suzuki T.
Hashimoto H.
Yoshimura J.
Okamoto T.
Shin C.
Bull.Chem. Soc. Jpn.
1985,
58:
1413
<A NAME="RU11503ST-22B">22b</A>
Yoshimura J.
Yamaura M.
Suzuki T.
Hashimoto H.
Chem. Lett.
1983,
1001
<A NAME="RU11503ST-23">23</A>
To a cooled (-78 °C)solution of 22 (348 mg, 0.85 mmol) in anhydCH2Cl2 (10 mL) was added dropwise allyltrimethyl-silane(0.270 mL, 1.71 mmol). After being
stirred for 5 min, a solutionof TiCl4 (0.14 mL, 1.283 mmol) in anhyd CH2Cl2 (2mL) was added over a period of 40 min. The mixture was stirred for4 h at the same
temperature and then allowed to warm to r.t. andstirred for 10 h. After which, a sat.
aq NaHCO3 (1 mL)and brine (2 mL) were slowly added. The organic layer was separatedand the
aq phase was extracted with CH2Cl2 (2 × 2mL). The combined organic layers were dried over anhyd Na2SO4 andconcentrated. The crude was purified by chromatography on silicagel (EtOAc/PE)
to give pure (5S,6S)-8 (86 mg),pure (5S, 6R)-23 (38 mg), and a mixture of un-separated(5S,6S)-8 and (5S,6R)-23 (191 mg) ina combined yield of 95%. Major diastereomer (5S,6S)-8: colorless oil. [α]D
20 +56.5(c 1.0, CHCl3). IR(neat): νmax = 3075,2952, 2929, 1642,1513, 1463, 1248, 1175 cm-1. 1H NMR(500 MHz, CDCl3): δ = 7.08 (m, 2 H,Ar-H), 6.83 (m, 2 H, Ar-H), 5.87 (m, 1 H, CH=), 5.40 (d, J = 14.6 Hz,1 H, NCH2), 5.13 (m, 1 H, =CH2),5.09 (m, 1 H, =CH2), 3.94-3.88 (m,1 H, H-5), 3.91 (s, 3 H, OCH3), 3.88 (d, J = 14.6 Hz,1 H, NCH2), 3.23 (vrt. dt, J = 6.6,4.7 Hz, 1 H, H-6), 2.63 (m, 2 H, =CCH2) 2.50(ddd, J = 8.0,8.8, 17.0 Hz, 1 H, H-3), 2.27 (ddd, J = 7.4,8.2, 17.0 Hz, 1 H, H-3), 1.94 (m, 1 H, H-4), 1.81 (m, 1 H, H-4),0.9 (s, 9 H,
t-Bu), 0.18 (s, 3 H, SiCH3), 0.08(s, 3 H, Si-CH3) ppm. 13CNMR (125 MHz, CDCl3): δ = 169.39 (C=O),158.99 (Ar), 136.11 (CH=), 129.44 (Ar), 129.37 (2 C, Ar),117.44
(=CH2), 114.01 (2 C, Ar), 68.38 (C-6),59.39 (C-5), 55.32 (OCH3), 48.23 (N-CH2),33.62 (=CH-CH2), 28.96 (C-3), 25.77 (C-4), 25.68(3C, t-Bu), 17.97 (SiCMe3), -4.90(Si-CH3), -5.13 (SiCH3) ppm. MS (ESI): m/z (%) = 390(100) [M + H+],412 (11) [M + Na+].HRMS calcd for [C22H35NO3Si + H]+:390.2464. Found: 390.2463. (5S,6R)-Minor diastereomer 23:colorless oil. [α]D
20 -51.4(c 1.0, CHCl3). 1HNMR (500 MHz, CDCl3): δ = 7.09 (m,2 H, Ar-H), 6.80 (m, 2 H, Ar-H), 5.67 (m, 1 H, CH=), 5.44(d, J = 14.9Hz, 1 H, NCH2), 5.12 (m, 1 H, =CH2),5.09 (m, 1 H, =CH2), 3.95 (m, 1 H, H-5), 3.78(s, 3 H, OCH3), 3.77 (d, J = 14.9Hz, 1 H, NCH2), 3.21 (vrt. ddt, J = 9.8,3.4, 2.0 Hz, 1 H, H-6), 2.70 (ddd, J = 7.2,12.3, 18.5 Hz, 1 H, H-3), 2.52 (m, 1 H, =CCH2),2.37 (ddd. J = 1.4,6.5, 18.5 Hz, 1 H, H-3), 2.09 (m, 1 H, =CCH2),2.01 (m, 1 H, H-4), 1.74 (m, 1 H, H-4), 0.8 (s, 9 H, t-Bu), 0.08 (s, 3 H, SiCH3),0.05 (s, 3 H, SiCH3) ppm. 13CNMR (125 MHz, CDCl3): δ = 169.68 (C=O),158.79 (Ar), 133.85 (CH=), 129.24 (Ar), 129.20 (2 C, Ar),118.32
(=CH2), 113.94 (2 C, Ar), 65.78 (C-6),61.86 (C-5), 55.30 (OCH3), 46.60 (NCH2), 36.65(=CHCH2), 26.89 (C-3), 25.68 (3 C, t-BuC), 24.17 (C-4), 17.92 (SiCMe3), -4.94(2 C, SiCH3) ppm. MS (ESI): m/z (%) = 390.1(100) [M + H+], 412.2(19) [M + Na+]. HRMScalcd for [C22H35NO3Si + H]+:390.2464. Found: 390.2463.
<A NAME="RU11503ST-24">24</A>
Major diastereomer (5S,6S)-24: whitesolid. Mp 67-68 °C. [α]D
20 -4.5(c 1.05, CHCl3). IR(film): νmax = 3222,1669 cm-1. 1H NMR(500 MHz, CDCl3): δ = 5.73 (m, 1 H, =CH), 5.61(brs, 1 H, NH), 5.22 (m, 1 H, =CH2), 5.19 (m,1 H, =CH2), 4.0 (m, 1 H, H-5), 3.36 (ddd, J = 2.8, 3.6,9.7 Hz, 1 H, H-6, decoupling H-5, J = 3.6,9.7 Hz), 2.57 (ddd, 6.4, 12.1, 18.6 Hz, 1 H, H-3), 2.32 (m, 2 H, =CH-CH2),2.20 (ddd, J = 9.0,9.8, 18.6 Hz, 1 H, H-3), 1.97 (m, 1 H, H-4), 1.84 (m, 1 H, H-4),0.90 (s, 9 H,
t-Bu), 0.08 (s, 3 H, SiCH3), 0.02(s, 3 H, SiCH3) ppm. 13CNMR (125 MHz, CDCl3): δ = 171.54 (C=O),133.63 (CH=), 119.54 (CH2=), 65.96(C-5), 56.43 (C-6), 36.96 (C-4), 28.15 (CH2-CH=),26.37 (C-3), 25.76 (3 C, t-Bu), 18.11(SiCMe3), -4.39 (SiCH3), -4.94 (SiCH3)ppm. MS (ESI): m/z (%) = 270,(100) [M + H+], 292 (20) [M + Na+].HR-ESI-MS calcd for [C14H27NO2Si + H]+: 270.1889.Found: 270.1907. Minor diastereomer (5S,6R)-25: whitesolid. Mp 67-68 °C. [α]D
20 +15.3(c 0.98, CHCl3). IR(film): νmax = 3190,1682 cm-1. 1H NMR(500 MHz, CDCl3): δ = 5.74 (m, 1 H,CH=), 5.70 (m, 1 H, NH), 5.21 (dd, J = 0.8, 14.7 Hz, 1 H, =CH2),5.18 (dd, J = 0.8,14.7 Hz, 1 H, =CH2), 3.66 (ddd, J = 3.3,6.5, 9.3 Hz, 1 H, H-5, irradiation at H-6 gave dd, J = 3.3,9.3 Hz), 3.23 (ddd, J = 9.5, 6.5, 4.5 Hz,1 H, H-6), 2.53 (ddd, J = 5.8, 6.2, 17.8 Hz,1 H, H-3), 2.34 (ddd, J = 6.5, 9.4, 17.8 Hz,1 H, H-3), 2.12-1.92 (m, 1 H, CH2CH=),1.84-1.78 (m, 2 H, H-4), 0.9 (s, 9 H, t-Bu),0.56 (s, 3 H, SiCH3), 0.50 (s, 3 H, SiCH3)ppm. 13C NMR (125 MHz, CDCl3): δ = 171.28(C=O), 133.41 (CH=), 119.67 (CH2=),69.11 (C-5), 58.11 (C-6), 38.55 (C-4), 28.46 (C-3), 28.30 (CH2-CH=),25.71 (3 C, t-Bu), 17.95 (SiCMe3), -4.27(SiCH3), -4.75 (SiCH3) ppm. MS (ESI): m/z (%) = 270(100) [M + H+], 292(3) [M + Na+]. HR-ESI-MScalcd for [C14H27NO2Si + H]+:270.1889. Found: 270.1890.
<A NAME="RU11503ST-25">25</A>
The ee was determined by HPLC analysisusing a Chiracel® OJ-H column (0.46 cm × 25cm; column temperature: r.t.; eluent: hexane/isopropylalcohol
= 37:3; flow rate = 1.0mL/min; wavelength: 240 and 260 nm, t
R = 11.50and 16.39 min).